School of Mathematics and Statistics
 Training Program for Academic Master's Degree

(Implemented Since 2018)

1. Training objectives

1. Enable students to gain a good understanding of Marxist-Leninist Doctrine, Mao Zedong Thought, Deng Xiao-ping Theory, the important thought of Three Represents, Scientific Outlook on Development, and Xi Jinping's "The Thought on Socialism with Chinese Characteristics for a New Era", to support the Party's Basic Guideline and establish correct outlooks on the world, life and values, to have good ideological and political qualities and moral character, good humanistic literacy and academic accomplishment, and a strong sense of enterprise and responsibility, to observe law and discipline, to keep physically and mentally healthy, to be willing to serve the people, serve the CCP's governance and administration, serve the consolidation and development of the socialist system with Chinese characteristics, and serve the Reform and Opening-up and the construction of socialist modernization.
2. Have a solid command of the basic theory of mathematics and systematic professional knowledge. Be familiar with the emerging trends of this profession. Know how to use modern technologies such as computers and the Internet. Accept the lessons of independent scientific research. Be capable of independently engaging in scientific research, teaching, or other practical work for this subject.
3. Master a foreign language. Be able to use this foreign language to efficiently read the scientific and technological literature of this subject.

2. Research fields (see appendix)

3. Period of schooling

1. The schooling period of an academic master's degree in our institute is normally 3-4 years, including 1-1.5 years for course study.
2. Standards for early graduation (at least 2 years' study at school): The academic masters who apply for early graduation shall have studied all courses prescribed by training program and completed the examinations of other trainings. Applicants shall have excellent results and strong innovative ability. These students must publish one paper related to their subject in the SCI or EI journals, or publish two papers (or more) in the designated learned periodicals. These include papers that have received official letters of acceptance. The first author of a published paper must be from the School of Mathematics and Statistics of Wuhan University. If the paper is published together with others in Chinese, the student is required to be the first author. If the paper is published with others in a foreign language, the author can be arranged in alphabetical order by name according to the international general rules for mathematical papers. In addition, for papers in which a teacher is listed as the first author and a student is listed as the second author, the student can be assumed as the first author. If there are objections on the qualification of dissertations, the final arbitration may be made by the Academy Degree Committee.

4. Courses (see appendix) and credits

1. Classification of courses

Academic master's courses are classified as degree courses and elective courses
I. Degree courses
(1) Public required course for the whole school: ideological and political theory courses and the 1 st foreign language (72 class hours, 2 credits). Ideological and political theory courses include one required course "Research on the Theory and Practice of Socialism with Chinese Characteristics" (36 class hours, 2 credits), and one elective course the "Dialectics of Nature" (18 class hours, 1 credit).
(2) Core curriculum courses: This refers to courses which all academic masters of the same first-class discipline should learn together, including the methodology of scientific research in this discipline and the common professional courses.
(3) Research oriented required courses: This refers to required courses of certain research field for academic masters.

II. Elective courses

Elective courses include public elective courses and professional elective courses. Public elective courses include courses in computer science, management, liberal arts, PE, career guidance etc. Academic master students should elect no more than 2 credits. Professional elective courses include courses within a specific discipline which can broaden students' scope of knowledge and deepen their specialized knowledge, as well as other courses designated by a teacher according to research fields.

2. Credits

Requires a total of 42 credits: Course credits 30, practical credits 2, paper credits 10.
Detailed course credits are provided below: Ideological and political theory course, 3 credits; First foreign language, 2 credits; Core curriculum courses, no less than 12 credits; Research oriented required courses, no less than 9 credits; the rest are credits for elective courses.

Choosing extra core curriculum courses as research oriented required courses is allowed. Choosing extra research oriented required courses as elective courses is allowed.

5. Required programs

1. Practice program

(1) Academic masters shall carry out social practice, professional practice or academic exchanges in school. The practice program includes campus practical teaching (such as computer operation and programming, case analysis, and simulation training) and off-campus practice (such as social survey, field research, and base practice). Off-campus professional practice normally starts in the 4th or 5th semester. Students shall submit a practice summary report after completing their professional practice, and receive 2 credits following approval.
(2) The experiences of taking part in practice and academic exchanges shall be recorded in the Examination Form for Practice of Academic Masters. Students can't take part in graduation defense until the practice and academic exchanges have been approved and recorded by the school and master school training department.
2. Opening report and mid-term examination

Mid-term examination and distribution are required at the end of the latter semester of the second academic year. Those with exceptional grades can directly pursue a doctoral degree, while
those who are not qualified will be dropped out. The rest who are qualified will continue studying for a Master's Degree.

At the end of the 3rd semester or the beginning of the 4th semester, students put forward the title and writing plan of their dissertation under their teachers' guidance, and make an opening report to a graduate steering group. Students can start research and paper writing after approval.

6. Dissertation

1. Academic masters must take part in at least one research program under the guidance of tutors and at least eight academic exchange activities (attending academic conferences and listening to academic reports at home and abroad), and publish at least one dissertation in the designated periodicals (papers receiving an official letter of acceptance shall be deemed to be published). Signature requirements are the same as those in the standard of early graduation.
2. According to the characteristics of their research fields, students can start collecting data and selecting a topic under the guidance of tutors starting from the 4th semester, and propose the title and writing plan of the dissertation, and have the opening report at the end of the 4th semester. Make a progress report in a related research group at the proper time during the 5th semester. Organize and print the dissertation in the 5th semester or at the beginning of the 6th semester. The dissertation requires a standardized format, correct proposition, careful reasoning, accurate data, fluent text, and must be defended strictly according to related regulations. Thesis defense must be organized at the end of the semester. Dissertation level should be good or above.

7. Training method

1. Tutors play a major role in the training of masters, together with guidance groups. Fully-utilize the tutor responsibility system, which is guided by scientific research and practical innovation. Pay full attention to every postgraduate's political thoughts, moral character, professional learning, physical and mental health, and scientific research ability. Teach students in accordance with their aptitude. Give them serious training and strict requirements. Emphasize the initiative and consciousness of postgraduates in the process of training. Apply more heuristic and seminar teaching methods. Focus on the cultivation of research and innovation abilities of postgraduates.
2. In the process of teaching, focus on academic training links such as subject research, special topic discussion and academic reports, and strengthen practical teaching links.
3. Strengthen the training of the literature reading and information retrieval abilities of
academic postgraduates. Make a list of the main classical works, frontier works, major learned periodicals and other catalogues that must be read and that can be selectively read by postgraduates of this major (discipline). Literature reading should be included in the scope of examination or checked in the form of reading reports, opening reports, etc.
4. The tutor (or postgraduate guidance group) should develop a reasonable individual training plan according to training methods and personalized principle within the first month of the first semester, and the plan needs to make specific arrangements for curriculum learning, practical activities, academic activities, scientific research and dissertation work, etc.

Appendix 1: Research Aras and Curriculum in pure math

Research Areas in pure math.

01 partial differential equations and its applications in physics, biology and medicine
02 Degenerate partial differential equations
03 Partial differential equations in fluid dynamics
04 Complex and hyper-complex boundary behaviour
05 Algebra and representation theory, number theory and algebraic geometry
06 functional analysis and its applications
07 several complex variables and complex geometry
08 differential geometry
09 geometric analysis
10 fractal geometry and dynamic systems

Pure Math (Code 070101) Curriculum for the Master

Program

		Geometric Structures on Spaces	2	54	2 or 3 or 4
		Geometric Analysis	2	54	3 or 4
		Algebraic Geometry	2	54	2 or 3
		Clifford Analysis	2	54	2 or 3
		Dynamical System	2	54	2 or 3

Appendix 2: Research Areas and Curriculum in
computational math
Research Areas in computational math
01 Numerical Methods on Partial Differential Equations
02 Numerical Algebra
03 Multiscale Modeling and Simulation
04 Computational Materials
05 Partial Differential Equations and Optimal Control
06 Inverse Problems and Computation
07 Scientific and Industrial Computational Softwares
08 Computational Intelligence
09 Quantum Computation
10 Computational Fluid Dynamics
11 Computational Biology
12 Computer Sciences and Its Applications

Computational Math (Code 070102) Curriculum for the
Master Program

Categories		Cour se Code s	Courses		$\begin{aligned} & \text { cre } \\ & \text { dits } \end{aligned}$	$\begin{aligned} & \text { hou } \\ & \text { rs } \end{aligned}$	$\begin{gathered} \text { Semest } \\ \text { er } \end{gathered}$	Remarks
			Theory and Practice of Scientific Socialism		2	36	1	
			Dialectics of Nature		1	18	1	
			First Foreign Language	Master English	2	72	1	
				Doctor (Master) French				
				Doctor (Master) German				
				Doctor (Master) Japanese				
				Doctor (Master) Russian				
	2000000000000000	Remarks: This refers to courses which all academic masters of the same first-class discipline should learn together, including the methodology of scientific research in this discipline and the common professional courses.						Closed book exam. Select at least 3 courses, among which Functional analysis is mandatory
				unctional Analysis	4	72	1	
			Different	le Manifolds and Topology	4	72	1	
				Modern Algebra	4	72	1	
				y of Function Spaces	4	72	1	
				Measure Theory	4	72	1	
				hematical Statistics	4	72	1	
			Adva	ced Numerical Analysis	4	72	1	
		Remarks: This refers to required courses of certain research field for academic masters.						
			Modern	umerical Methods on PDEs	3	54	2 or 3	
			Adv	ced Numerical Algebra	3	54	2 or 3	
			Scientifi	nd Engineering Computing	3	54	2 or 3	

		Finite Element Methods		3	54	2 or 3	
		Notes: Public elective courses include courses in computer science, management, liberal arts, PE, career guidance etc. Academic master students should elect no more than 2 credits.					
			Doctor (Master) English				
		Second	Master French				
			Master German				
			Master Japanese				
			P.E	1	36		
			truction of Career	1	36		
		Professional elective courses include courses within a specific discipline which can broaden students' scope of knowledge and deepen their specialized knowledge, as well as other courses designated by a teacher according to research fields.					
		Multiscale	modeling and simulation	2	54	2 or 3	
		Introduction	Computational Materials	2	54	2 or 3	
		Inverse Problem	s: Theory and Computation	2	54	2 or 3	
		Computat	onal Systems Biology	2	54	2 or 3	
		Computa	ional Fluid Dynamics	2	54	2 or 3	
		Compu	ational Intelligence	2	54	2 or 3	
			ft Computing	2	54	2 or 3	
		Quantum	formation and Quantum Computation	2	54	2 or 3	
		Notes: Required course for academic master students from interdisciplinary background or equal academic capacity. Take least 2 courses. No credits are awarded, but a passing score is required.					
			Real Analysis				
			mplex Analysis				
		Differential Equ	tions on Mathematical Physic				
			merical Analysis				

Appendix 3: Research Areas and Curriculum in Probability and statistics

Research Areas in Probability and Statistics

01 Stochastic Analysis
02 Stochastic Processes
03 Stochastic Matrices
04 Applied Probability
05 Insurances and Mathematical Finance
06 Mathematical Statistics
07 Survival Analysis
08 High Dimensional Data Analysis

Probability and Statistics (Code 070103) Curriculum

for the Master Program

Appendix 4: Research Areas and Curriculum in Applied Math

Research Areas in Applied Math

01 Wavelet Analysis and Its Applications
02 Control theory of differential equations
03 Long Time Behavior, Controllability, Observability
04 Coding Theory and Information Security
05 Optimization Theory and Its Applications
06 Ill-posed Problems and Generalized Inverses Theory
07 Applied Nonlinear Analysis
08 Complex Networks: Theory and Applications
09 Nonlinear Dynamics

Applied Math (Code 070104) Curriculum for the Master

Program

Categories		Course Codes	Courses		cr ed its	$\begin{gathered} \text { hou } \\ \text { rs } \end{gathered}$	$\begin{gathered} \text { Semest } \\ \text { er } \end{gathered}$	Remarks	
$=$			Theory and Practice of Scientific Socialism		2	36	1		
		First Foreign Language	Dialectics of Nature	1	18	1			
		Master English	2	72	1				
		Doctor (Master) French							
		Doctor (Master) German							
		Doctor (Master) Japanese							
		Doctor (Master) Russian							
			Remarks: This refers to courses which all academic masters of the same first-class discipline should learn together, including the methodology of scientific research in this discipline and the common professional courses.						Closed book exam. Select at least 3 courses , among which Functional analysis is mandatory
				Functional Analysis	4	72	1		
			Differen	able Manifolds and Topology	4	72	1		
				Modern Algebra	4	72	1		
				ory of Function Spaces	4	72	1		
				Measure Theory	4	72	1		
				athematical Statistics	4	72	1		
			Adv	nced Numerical Analysis	4	72	1		
				Theory	d Algorithm of Optimization	3	54	1 or 2	At least 6 credits required.
				Concise Co	urse on Optimal Control Theory	3	54	2	
				Wavelet	Analysis and Its Applications	3	54	2	
				Grap	theory and Applications	3	54	2	

Appendix 5: Research Areas and Curriculum in Statistical Science

Research Areas in Statistical Science

1. Survival Analysis
2. Biostatistics
3. Regression analysis
4. Semiparametric and Nonparametric Statistics
5. Financial Statistics
6. Big data Analysis
7. Computational Statistics
8. Economic Statistics
9. Medical and Health Statistics
10. Comprehensive Evaluation of Health Performance

Statistical Science (Code 071400) Curriculum for the

Master Program

Categories		Cour se Code s	Courses	cre dits	$\begin{aligned} & \text { hou } \\ & \text { rs } \end{aligned}$	Semester	Remarks
			Theory and Practice of Scientific Socialism	2	36	1	5 credits in total
			Dialectics of Nature	1	18	1	
			First Foreign Language	2	72	1	
8000000000		Remarks: This refers to courses which all academic masters of the same first-class discipline should learn together, including the methodology of scientific research in this discipline and the common professional courses.					Closed book exam, drafted by the exam committee 。 At least 12 credits required.
			Measure theory	4	72	1	
			Foundations of Modern Probability Theory	4	72	1	
			Mathematical Statistics	4	72	1	
			Statistical Computing	4	54	2	
	Research Oriented Required Courses	Remarks: This refers to required courses of certain research field for academic masters.					
			Sampling Techniques and Methods	3	54	2	At least 9 credits required.
			Linear Models	3	54	2	
			Multivariate Statistical Analysis	3	54	2	
			Nonparametric Statistics	3	54	2	
			Time Series Analysis	3	54	3	
			Advanced Numerical Analysis	3	54	2	
$\begin{aligned} & \stackrel{(110}{0} \\ & \stackrel{\lambda}{\underset{\sim}{\circ}} \end{aligned}$		Notes: Public elective courses include courses in computer science, management, liberal arts, PE, career guidance etc. Academic master students should elect no more than 2 credits.					
			Second Foreign Language	2	72	1	

		P.E.	1	36		
		Instruction of Career	1	36		
	Professional elective courses include courses within a specific discipline which can broaden students' scope of knowledge and deepen their specialized knowledge, as well as other courses designated by a teacher according to research fields.					At least 4 credits required.
		Case Study	2	54	3	
		Statistical Analysis of Qualitative Data	2	54	3	
		Bayesian Statistics	2	54	3	
		Data Mining	2	54	4	
		Financial Mathematics	2	54	3	
		Survival Analysis	2	54	3	
$\begin{aligned} & \stackrel{3}{2} \\ & \stackrel{\rightharpoonup}{\hat{1}} \\ & \stackrel{i}{5} \end{aligned}$	Interdi co	tes: Required courses for academic mast plinary background or equal academic es. No credits are awarded, but a passing	ac	ts fr Take requ	$\text { least } 2$ d.	
8		Introduction to Probability		72	1	
\odot		Introduction to Mathematical Statistics		72	1 or 2	

